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Cosmic Ray Energy Spectrum at High (> 10'* eV/nuc) Energies
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Figure 2. Cosmic ray energy spectrum multiplied by E*5 ¢
better show the spectral variations. ( Adapted from Hillas, 1984

* Preliminary (2001) KASCADE
results on the Knee of the Cosmic

Ray Spectrum
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Diffusion of Cosmic Rays due to Pitch Angle Scattering
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Fits to KASCADE Data
through the Knee of the

Cosmic Ray Spectrum

GRB occurred ~2x10° years ago
at a distance of ~500 pc
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Energy-loss Mean Free Path of UHECR Protons on CMBR Photons

Energy Losses
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Effects of Star Formation Rate on UHECR Spectrum
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Best Fit to High Energy Cosmic Ray Data

Inject -2.2 spectrum
(relativistic shock
acceleration index)

Better fit with upper SFR

“Second knee” at
transition between
galactic and extragalactic
components

Fits to KASCADE and
HiRes data imply local
luminosity density of
GRBs

Requires large baryon
load: f, ~50-200
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Complete Solution to the Problem of CR Origin

Cosmic Rays below =
10'4 eV from SNe that
collapse to neutron
stars

Cosmic Rays above =
10’4 eV from SNe that
collapse to black holes

CRs between knee
and second knee
from GRBs in Galaxy

CRs at higher energy
from extragalactic/
cosmological origin

(Wick et al. 2004)
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2. Neutrinos from GRBs

Standard Fireball/Blast
Wave Model

Leptonic emission processes:

1. Nonthermal synchrotron
2. Compton scattering

&, ~ 0.1

Hadronic emission processes:

1. Photopion production
2. Cascade radiation

Py > " —>e* (+n,p,v)

>’ 52y —>et

Ambient
photon or
synchrotron

photon ="

Jet axis
Line of

v Proton-induced
‘Shock Ccascade

hock

Inverse-Compton
scattering




Proton Injection and Cooling Spectra
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Photon index
between —1.5
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Fits data for o
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spectrum during o
prompt phase h
M)
Photomeson :
Cascade:
Py > 7" —>e

e emits synchrotron (S1)
and Compton (C1) photons

Photomeson Cascade Radiation Fluxes

1077 E, et

9 =
s &

—
[
I

—

-

()

- | IIIII

o =100

- Nonthermal Baryon Loading Factor f = 1

e -4 -2 - wearh 4
ot = 3x10 ergscm'__“_. .

' + emits synchrotron (S2) and
—> € y
Yy Compton (C2) photons, etc.

1400

10 10° 108 10’ 108

Energy [=2V)




il 1 T 1T T T T T 1 ]
107* total fluences: E
Photon and F ' ]
NE TE s ~ ™ photons neutrinos (v ) -
eutrino 5107°F : B3
Fluence during g F ]
= F j
Prompt Phase 10 " E
Ll = ]
e 1077 L _
Nonthermal Baryon F /
Loading Factor f, = 1 /
1078 L
D= 3x10* ergs cm A R R N N1 NN S R S
3 4 5 6 7 8 9 101112131415 1617 18

5 =100
Log(E) (eV)

Hard y-ray emission component from hadronic cascade radiation

inside GRB blast wave with associated outflowing high-energy neutral

beam of neutrons, y-rays, and neutrinos
Py > x5 —>e* (+n,p,v)

>’ 52y —>et



Fluence of Photomeson Muon Neutrinos

For a fluence of

3x10- ergs/cm?
(~30 - 40/yr)

N, detected by
IceCube:

N,= 0.0032,
0.00015, 0.00001
for 6 =100, 200,
and 300,
respectively in
collapsar model

N,~ 0.009 for 0 =
100 and 300 in
supranova model
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Neutrino Detection from GRBs only with Large Baryon-Loading

For a fluence of
3x10+ ergs/cm?, (~2/yr)

N, predicted by
IceCube:

N~ 1.3,0.1,0.016
for 6 = 100, 200,
and 300,
respectively m
collapsar model for
e = 20
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3. Evidence for Cosmic Rays in GRBs:

The Case of GRB 941017
Gonzalez et al., Nature (2003)
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GRB 941017: 11™ highest fluence GRB
in BATSE catalog

Anomalous y-ray component now seen
in 2 other GRBs
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Leptonic Models for y-ray Emission Components in GRB 941017

« Major difficulty is that >10 MeV y-ray component increases while < 2
MeV synchrotron component decays

« Comptonization of reverse shock emission by forward shock electrons

(but requires extreme parameters) (Granot and Guetta 2003; Pe’er and Waxman
2004)



Neutral Beam Model for Anomalous y-rays in GRB 941017
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Neutral Beam Model (Atoyan and Dermer, ApJ, 2003) for blazar jets
Two hadronic emission components



Radiation Physics of Neutron/Hyper-relativistic Electron Beam

GRB source GRB jet s ) /\; p:
/ /', ’y//
d BZ ) .
Synchrotron energy-loss rate: — y _oBy sin"y
dt 47m,C
Synchrotron energy-loss timescale: ; _ dy
syn Y | dt

Gyration frequency: @, =eB/m.y | yo> 1x10°
" \/B(G)sinl//

When oyt << 1, hyper-relativistic electrons

syn

: 3x10°
When oyt << 0, electrons emit most of Y2 Vi =

syn
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Hyper-relativistic Electron Synchrotron Radiation

Mean energy of synchrotron photons emitted by electrons with y = y, .

_heBsiny 7w 500
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3. Fluence ratio = hadronically dominated, and large v, flux



4. Cosmic Rays from GRBs in the Galaxy

Numerical simulation model of cosmic ray propagation from jetted GRBs in the
Milky Way

d . q._
—(yMmv)=—V
dt(ym) VX

Larmor radius of a
particle spiraling in
a magnetic field

mc’y N 7 /10’
g8  B(uG)

I = Kpc




Magnetic Field Model of the Galaxy

Cosmic rays move in response to a large-scale magnetic field that traces the
spiral arm structure of the Galaxy, and to pitch-angle scattering with
magnetic turbulence in the Galactic magnetic field.

Disk magnetic field:

B(r, ) = BO(R—f) cos(@ - fIn—)

Alvarez-Muniz, et al. (2000)

The typical Galactic magnetic field near

Earth is 3-4 uGauss

Combined finite difference/Monte Carlo

simulation for motion of cosmic ray

protons and 1ons, and protons formed

from neutron decay.
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Cosmic Ray Neutrons

Neutrons are also formed in high-energy cosmic ray sources

Neutrons decay on time scales of 920y seconds, due to time dilation
(about 1 kpc for y=109%), and then gyrate in magnetic field

Cosmic ray neutrons decay over a pathlength

r =ct y =(y/10°)kpc

n—>p+e +v,



Trajectories of Cosmic Rays in the Galaxy
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Cosmic Rays from GRBs

GRB located at 3 kpc from center of the Galaxy
GRB emission is jetted with jet opening angle of 0.1 radian
Jet 1s pointed radially outward along Galactic plane




Rate of GRBs in the Galaxy

* BATSE obs. imply ~ 2 GRBs/day over the full sky
* Beaming factor increases that rate by factor ~500
*  Volume of the universe — 4m(4000 Mpc)® /3

» Density of L* galaxies ~ 1/(200-500 Mpc?)

250Mpc /L* 1 365
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Rate of Irradiation Events by GRBs

Fluence referred to daily Solar energy fluence
»=Sp =12x10"S ergscm™
S>10"

for significant effects on biology. Using constant energy reservoir result implies
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where 104, yr is the mean time between galactic GRBs, and the GRB distance is
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Effects of Cosmic Rays from Galactic GRBs

Extinction episodes (Dar, Laor & Shaviv 1998)

Melott et al. (2004) suggest that a GRB pointed towards Earth produced a lethal flux
of high-energy photon and muon radiation flux that destroyed the ozone layer, killed
plankton, and led to trilobite extinction in the Ordovician Epoch

However, geological
evidence points toward two
pulses; a prompt extinction
and an extended ice age.

The prompt neutrons and
gamma-rays from a GRB
could have produced the
prompt extinction. The .
delayed cosmic rays could
have produced the later ice
age




Flux of Cosmic Rays from GRB Jet Pointed towards the Earth

Fluxes of cosmic ray neutrons, neutron-decay protons, and protons
passing near Earth as a function of time for cosmic ray Lorentz factors
between 10% and 10°. The source of high-energy cosmic rays is located
1000 parsecs from the Earth, with the GRB jet pointed in our direction.
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Summary

Complete model where Cosmic Rays originate from
1. SNe that collapse to neutron stars in the Galaxy (E<~10'4 eV),
2. SNe that collapse to black holes (GRBs) in the Galaxy (104 eV <~ E <~ 5x10'7 eV),
3. Extragalactic SNe that collapse to black holes (GRBs) (E >~ 5x10'7 eV)

GRB/Cosmic Ray model requires that GRBs are hadronically dominated

High-energy neutrino detection from GRBs only if GRBs are hadronically
dominated

Anomalous hard y-ray emission component in GRB 941017 due to hadronic
cascade radiation inside GRB blast wave (during prompt phase) and
synchrotron radiation of hyper-relativistic electrons formed by outflowing
neutrons (during prompt and extended phase)

Observation of GRB 941017 may provide first clear evidence for hadronic
acceleration in GRBs and the sites where high-energy cosmic rays originate

GRBs in the Milky Way could have produced earlier extinction events
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